Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas

Akitaka Matsumura, Kenji Nishihara

    研究成果: Article査読

    137 被引用数 (Scopus)

    抄録

    This paper is concerned with the asymptotic behavior toward the rarefaction wave of the solution of a one-dimensional barotropic model system for compressible viscous gas. We assume that the initial data tend to constant states at x=±∞, respectively, and the Riemann problem for the corresponding hyperbolic system admits a weak continuous rarefaction wave. If the adiabatic constant γ satisfies 1≦γ≦2, then the solution is proved to tend to the rarefaction wave as t→∞ under no smallness conditions of both the difference of asymptotic values at x=±∞ and the initial data. The proof is given by an elementary L2-energy method.

    本文言語English
    ページ(範囲)325-335
    ページ数11
    ジャーナルCommunications in Mathematical Physics
    144
    2
    DOI
    出版ステータスPublished - 1992 2

    ASJC Scopus subject areas

    • 統計物理学および非線形物理学
    • 物理学および天文学(全般)
    • 数理物理学

    フィンガープリント

    「Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル