Global Strong Well-Posedness of the Three Dimensional Primitive Equations in Lp -Spaces

Matthias Georg Hieber, Takahito Kashiwabara

研究成果: Article

18 引用 (Scopus)

抜粋

In this article, an Lp-approach to the primitive equations is developed. In particular, it is shown that the three dimensional primitive equations admit a unique, global strong solution for all initial data a∈[Xp,D(Ap)]1/p provided p∈ [ 6 / 5 , ∞). To this end, the hydrostatic Stokes operator Ap defined on Xp, the subspace of Lp associated with the hydrostatic Helmholtz projection, is introduced and investigated. Choosing p large, one obtains global well-posedness of the primitive equations for strong solutions for initial data a having less differentiability properties than H1, hereby generalizing in particular a result by Cao and Titi (Ann Math 166:245–267, 2007) to the case of non-smooth initial data.

元の言語English
ページ(範囲)1077-1115
ページ数39
ジャーナルArchive for Rational Mechanics and Analysis
221
発行部数3
DOI
出版物ステータスPublished - 2016 9 1
外部発表Yes

ASJC Scopus subject areas

  • Analysis
  • Mechanical Engineering
  • Mathematics (miscellaneous)

フィンガープリント Global Strong Well-Posedness of the Three Dimensional Primitive Equations in L<sup>p</sup> -Spaces' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用