Global structure of steady-states to the full cross-diffusion limit in the Shigesada-Kawasaki-Teramoto model

研究成果: Article査読

抄録

In a previous paper [10], the author studied the asymptotic behavior of coexistence steady-states to the Shigesada-Kawasaki-Teramoto model as both cross-diffusion coefficients tend to infinity at the same rate. As a result, he proved that the asymptotic behavior can be characterized by a limiting system that consists of a semilinear elliptic equation and an integral constraint. This paper studies the set of solutions of the limiting system. The first main result gives sufficient conditions for the existence/nonexistence of nonconstant solutions to the limiting system by a topological approach using the Leray-Schauder degree. The second main result exhibits a bifurcation diagram of nonconstant solutions to the one-dimensional limiting system by analysis of a weighted time-map and a nonlocal constraint.

本文言語English
ページ(範囲)103-143
ページ数41
ジャーナルJournal of Differential Equations
333
DOI
出版ステータスPublished - 2022 10月 5

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「Global structure of steady-states to the full cross-diffusion limit in the Shigesada-Kawasaki-Teramoto model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル