Global weak solutions of the Navier-Stokes system with nonzero boundary conditions

R. Farwig*, H. Kozono, H. Sohr

*この研究の対応する著者

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Consider the Navier-Stokes equations in a smooth bounded domain Ω ⊂ R3 and a time interval [0,T), 0 < T ≤ ∞. It is well-known that there exists at least one global weak solution u with vanishing boundary values u∂Ω = 0 for any given initial value u0 ∈ L2σ(Ω) external force f = div F, F ∈ L2 (0,T;L2(Ω)), and satisfying the strong energy inequality. Our aim is to extend this existence result to a much larger class of global in time "Leray-Hopf type" weak solutions u with nonzero boundary values u∂Ω = g ∈ W 1/2,2(∂Ω). As for usual weak solutions we do not need any smallness condition on g; indeed, our generalized weak solutions u exist globally in time. The solutions will satisfy an energy estimate with exponentially increasing terms in time, but for simply connected domains the energy increases at most linearly in time.

本文言語English
ページ(範囲)231-247
ページ数17
ジャーナルFunkcialaj Ekvacioj
53
2
DOI
出版ステータスPublished - 2010 8
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 代数と数論
  • 幾何学とトポロジー

フィンガープリント

「Global weak solutions of the Navier-Stokes system with nonzero boundary conditions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル