Global well-posedness and decay for a Q tensor model of incompressible nematic liquid crystals in RN

Maria Schonbek, Yoshihiro Shibata

    研究成果: Article

    抄録

    We consider the motion of a viscous incompressible liquid crystal flow in the N-dimensional space RN. We study the global well-posedness of strong solutions in the Lp–Lq maximal regularity class.

    元の言語English
    ジャーナルJournal of Differential Equations
    DOI
    出版物ステータスAccepted/In press - 2018 1 1

    Fingerprint

    Maximal Regularity
    Global Well-posedness
    Nematic liquid crystals
    Nematic Liquid Crystal
    Strong Solution
    Liquid Crystal
    Liquid crystals
    Tensors
    Tensor
    Decay
    Motion
    Model
    Class

    ASJC Scopus subject areas

    • Analysis

    これを引用

    @article{f76f082cc23f412aa13e96f02b8330d9,
    title = "Global well-posedness and decay for a Q tensor model of incompressible nematic liquid crystals in RN",
    abstract = "We consider the motion of a viscous incompressible liquid crystal flow in the N-dimensional space RN. We study the global well-posedness of strong solutions in the Lp–Lq maximal regularity class.",
    keywords = "Global solutions in R, Long-time behavior, Nematic liquid crystals, Q tensor description, Quasilinear parabolic evolution equations, Regularity",
    author = "Maria Schonbek and Yoshihiro Shibata",
    year = "2018",
    month = "1",
    day = "1",
    doi = "10.1016/j.jde.2018.08.050",
    language = "English",
    journal = "Journal of Differential Equations",
    issn = "0022-0396",
    publisher = "Academic Press Inc.",

    }

    TY - JOUR

    T1 - Global well-posedness and decay for a Q tensor model of incompressible nematic liquid crystals in RN

    AU - Schonbek, Maria

    AU - Shibata, Yoshihiro

    PY - 2018/1/1

    Y1 - 2018/1/1

    N2 - We consider the motion of a viscous incompressible liquid crystal flow in the N-dimensional space RN. We study the global well-posedness of strong solutions in the Lp–Lq maximal regularity class.

    AB - We consider the motion of a viscous incompressible liquid crystal flow in the N-dimensional space RN. We study the global well-posedness of strong solutions in the Lp–Lq maximal regularity class.

    KW - Global solutions in R

    KW - Long-time behavior

    KW - Nematic liquid crystals

    KW - Q tensor description

    KW - Quasilinear parabolic evolution equations

    KW - Regularity

    UR - http://www.scopus.com/inward/record.url?scp=85052750932&partnerID=8YFLogxK

    UR - http://www.scopus.com/inward/citedby.url?scp=85052750932&partnerID=8YFLogxK

    U2 - 10.1016/j.jde.2018.08.050

    DO - 10.1016/j.jde.2018.08.050

    M3 - Article

    AN - SCOPUS:85052750932

    JO - Journal of Differential Equations

    JF - Journal of Differential Equations

    SN - 0022-0396

    ER -