Global well-posedness in critical besov spaces for two-fluid euler-maxwell equations

Jiang Xu, Jun Xiong, Shuichi Kawashima

研究成果: Article査読

10 被引用数 (Scopus)

抄録

In this paper, we study two-fluid compressible Euler-Maxwell equations in the whole space or periodic space. In comparison with the one-fluid case, we need to deal with the difficulty mainly caused by the nonlinear coupling and cancelation between electrons and ions. Precisely, the expected dissipation rates of densities for two carriers are no longer available. To capture the weaker dissipation, we develop a continuity for compositions, which is a natural generalization from Besov spaces to Chemin-Lerner spaces (space-time Besov spaces). An elementary fact that indicates the relation between homogeneous Chemin-Lerner spaces and inhomogeneous Chemin-Lerner spaces will been also used.

本文言語English
ページ(範囲)1422-1447
ページ数26
ジャーナルSIAM Journal on Mathematical Analysis
45
3
DOI
出版ステータスPublished - 2013
外部発表はい

ASJC Scopus subject areas

  • Analysis
  • Computational Mathematics
  • Applied Mathematics

フィンガープリント 「Global well-posedness in critical besov spaces for two-fluid euler-maxwell equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル