Gold Ultrathin Nanorods with Controlled Aspect Ratios and Surface Modifications: Formation Mechanism and Localized Surface Plasmon Resonance

Ryo Takahata, Seiji Yamazoe, Kiichirou Koyasu, Kohei Imura, Tatsuya Tsukuda*

*この研究の対応する著者

研究成果: Article査読

47 被引用数 (Scopus)

抄録

We synthesized gold ultrathin nanorods (AuUNRs) by slow reductions of gold(I) in the presence of oleylamine (OA) as a surfactant. Transmission electron microscopy revealed that the lengths of AuUNRs were tuned in the range of 5-20 nm while keeping the diameter constant (∼2 nm) by changing the relative concentration of OA and Au(I). It is proposed on the basis of time-resolved optical spectroscopy that AuUNRs are formed via the formation of small (<2 nm) Au spherical clusters followed by their one-dimensional attachment in OA micelles. The surfactant OA on AuUNRs was successfully replaced with glutathionate or dodecanethiolate by the ligand exchange approach. Optical extinction spectroscopy on a series of AuUNRs with different aspect ratios (ARs) revealed a single intense extinction band in the near-IR (NIR) region due to the longitudinal localized surface plasmon resonance (LSPR), the peak position of which is red-shifted with the AR. The NIR bands of AuUNRs with AR < 5 were blue-shifted upon the ligand exchange from OA to thiolates, in sharp contrast to the red shift observed in the conventional Au nanorods and nanospheres (diameter >10 nm). This behavior suggests that the NIR bands of thiolate-protected AuUNRs with AR < 5 are not plasmonic in nature, but are associated with a single-electron excitation between quantized states. The LSPR band was attenuated by thiolate passivation that can be explained by the direct decay of plasmons into an interfacial charge transfer state (chemical interface damping). The LSPR wavelengths of AuUNRs are remarkably longer than those of the conventional AuNRs with the same AR, demonstrating that the miniaturization of the diameter to below ∼2 nm significantly affects the optical response. The red shift of the LSPR band can be ascribed to the increase in the effective mass of electrons in AuUNRs.

本文言語English
ページ(範囲)6640-6647
ページ数8
ジャーナルJournal of the American Chemical Society
140
21
DOI
出版ステータスPublished - 2018 5月 30

ASJC Scopus subject areas

  • 触媒
  • 化学 (全般)
  • 生化学
  • コロイド化学および表面化学

フィンガープリント

「Gold Ultrathin Nanorods with Controlled Aspect Ratios and Surface Modifications: Formation Mechanism and Localized Surface Plasmon Resonance」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル