Goldstone theorem, Hugenholtz-Pines theorem, and Ward-Takahashi relation in finite volume Bose-Einstein condensed gases

Hiroaki Enomoto, Masahiko Okumura, Yoshiya Yamanaka

研究成果: Article

6 引用 (Scopus)

抜粋

We construct an approximate scheme based on the concept of the spontaneous symmetry breakdown, satisfying the Goldstone theorem, for finite volume Bose-Einstein condensed gases in both zero and finite temperature cases. In this paper, we discuss the Bose-Einstein condensation in a box with periodic boundary condition and do not assume the thermodynamic limit. When energy spectrum is discrete, we found that it is necessary to deal with the Nambu-Goldstone mode explicitly without the Bogoliubov's prescription, in which zero-mode creation- and annihilation-operators are replaced with a c-number by hand, for satisfying the Goldstone theorem. Furthermore, we confirm that the unitarily inequivalence of vacua in the spontaneous symmetry breakdown is true for the finite volume system.

元の言語English
ページ(範囲)1892-1917
ページ数26
ジャーナルAnnals of Physics
321
発行部数8
DOI
出版物ステータスPublished - 2006 8 1

ASJC Scopus subject areas

  • Physics and Astronomy(all)

フィンガープリント Goldstone theorem, Hugenholtz-Pines theorem, and Ward-Takahashi relation in finite volume Bose-Einstein condensed gases' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用