Goldstone theorem, Hugenholtz-Pines theorem, and Ward-Takahashi relation in finite volume Bose-Einstein condensed gases

Hiroaki Enomoto, Masahiko Okumura, Yoshiya Yamanaka

研究成果: Article査読

7 被引用数 (Scopus)

抄録

We construct an approximate scheme based on the concept of the spontaneous symmetry breakdown, satisfying the Goldstone theorem, for finite volume Bose-Einstein condensed gases in both zero and finite temperature cases. In this paper, we discuss the Bose-Einstein condensation in a box with periodic boundary condition and do not assume the thermodynamic limit. When energy spectrum is discrete, we found that it is necessary to deal with the Nambu-Goldstone mode explicitly without the Bogoliubov's prescription, in which zero-mode creation- and annihilation-operators are replaced with a c-number by hand, for satisfying the Goldstone theorem. Furthermore, we confirm that the unitarily inequivalence of vacua in the spontaneous symmetry breakdown is true for the finite volume system.

本文言語English
ページ(範囲)1892-1917
ページ数26
ジャーナルAnnals of Physics
321
8
DOI
出版ステータスPublished - 2006 8

ASJC Scopus subject areas

  • 物理学および天文学(全般)

フィンガープリント

「Goldstone theorem, Hugenholtz-Pines theorem, and Ward-Takahashi relation in finite volume Bose-Einstein condensed gases」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル