GPU-Accelerated VoltDB: A case for indexed nested loop join

Anh Nguyen, Masato Edahiro, Shinpei Kato

研究成果: Conference contribution

4 被引用数 (Scopus)

抄録

Graphics Processing Units (GPUs) are traditionally designed for gaming purposes. The new GPU hardware and new programming platforms for GPU applications have enabled GPUs to work as co-processors alongside Central Processing Units (CPUs) in order to speed up general purpose applications. In this paper, we focus on the design and implementation of the GPU-Accelerated indexed nested loop join (INLJ) for in-memory relational database management system (RDBMS). Previous studies have proposed novel approaches for using GPU to improve the performance of the relational INLJ, but they are only implemented on simulation systems. Their performance in current industry RDBMS still needs to be clarified. To this end, we implement the GPU-Accelerated INLJ algorithm and perform various experiments on that join in VoltDB, an inmemory commercial RDBMS. We also propose a method for handling skewed input data, which is a critical problem in the GPU INLJ. Our evaluations indicated that though the GPU-Accelerated INLJ is 2-14X faster than the default INLJ of VoltDB, the memory copy between the host and the GPU memory is the major factor that holds back the join's speedup rate.

本文言語English
ホスト出版物のタイトルProceedings - 2018 International Conference on High Performance Computing and Simulation, HPCS 2018
編集者Khalid Zine-Dine, Waleed W. Smari
出版社Institute of Electrical and Electronics Engineers Inc.
ページ204-212
ページ数9
ISBN(電子版)9781538678787
DOI
出版ステータスPublished - 2018 10月 29
外部発表はい
イベント16th International Conference on High Performance Computing and Simulation, HPCS 2018 - Orleans, France
継続期間: 2018 7月 162018 7月 20

出版物シリーズ

名前Proceedings - 2018 International Conference on High Performance Computing and Simulation, HPCS 2018

Conference

Conference16th International Conference on High Performance Computing and Simulation, HPCS 2018
国/地域France
CityOrleans
Period18/7/1618/7/20

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ ネットワークおよび通信
  • 安全性、リスク、信頼性、品質管理
  • モデリングとシミュレーション
  • 器械工学

フィンガープリント

「GPU-Accelerated VoltDB: A case for indexed nested loop join」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル