Gravitational and gravitoscalar thermodynamics

Shoichiro Miyashita*

*この研究の対応する著者

研究成果: Article査読

抄録

Gravitational thermodynamics and gravitoscalar thermodynamics with S2 × ℝ boundary geometry are investigated through the partition function, assuming that all Euclidean saddle point geometries contribute to the path integral and dominant ones are in the B3 × S1 or S2 × Disc topology sector. In the first part, I concentrate on the purely gravitational case with or without a cosmological constant and show there exists a new type of saddle point geometry, which I call the “bag of gold(BG) instanton,” only for the Λ > 0 case. Because of this existence, thermodynamical stability of the system and the entropy bound are absent for Λ > 0, these being universal properties for Λ ≤ 0. In the second part, I investigate the thermodynamical properties of a gravity-scalar system with a φ2 potential. I show that when Λ ≤ 0 and the boundary value of scalar field Jφ is below some value, then the entropy bound and thermodynamical stability do exist. When either condition on the parameters does not hold, however, thermodynamical stability is (partially) broken. The properties of the system and the relation between BG instantons and the breakdown are discussed in detail.

本文言語English
論文番号121
ジャーナルJournal of High Energy Physics
2021
9
DOI
出版ステータスPublished - 2021 9

ASJC Scopus subject areas

  • 核物理学および高エネルギー物理学

フィンガープリント

「Gravitational and gravitoscalar thermodynamics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル