Hand posture and gesture recognition using MYO armband and spectral collaborative representation based classification

Ali Boyali, Naohisa Hashimoto, Osamu Matsumoto

研究成果: Conference contribution

33 被引用数 (Scopus)

抄録

In this paper, we propose the use of Collaborative based Representation in Spectral Domain to recognize the postures and gestures from the Electromyography (EMG) recordings acquired by a recently introduced sensor; Thalmic Labs' MYO armband. The recognition accuracy obtained for a set of six hand gestures and postures is promising with an accuracy over 97 % which is a competent result in the related literature. The algorithms are developed for creating an intuitive human machine interface for navigating a robotic wheelchair.

本文言語English
ホスト出版物のタイトル2015 IEEE 4th Global Conference on Consumer Electronics, GCCE 2015
出版社Institute of Electrical and Electronics Engineers Inc.
ページ200-201
ページ数2
ISBN(電子版)9781479987511
DOI
出版ステータスPublished - 2016 2月 3
外部発表はい
イベント4th IEEE Global Conference on Consumer Electronics, GCCE 2015 - Osaka, Japan
継続期間: 2015 10月 272015 10月 30

出版物シリーズ

名前2015 IEEE 4th Global Conference on Consumer Electronics, GCCE 2015

Other

Other4th IEEE Global Conference on Consumer Electronics, GCCE 2015
国/地域Japan
CityOsaka
Period15/10/2715/10/30

ASJC Scopus subject areas

  • 器械工学
  • バイオテクノロジー
  • コンピュータ ネットワークおよび通信
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Hand posture and gesture recognition using MYO armband and spectral collaborative representation based classification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル