Heavily Doped and Highly Conductive Hierarchical Nanoporous Graphene for Electrochemical Hydrogen Production

Linghan Chen, Jiuhui Han, Yoshikazu Ito, Takeshi Fujita, Gang Huang, Kailong Hu, Akihiko Hirata, Kentaro Watanabe, Mingwei Chen

研究成果: Article

26 引用 (Scopus)

抜粋

Heavy chemical doping and high electrical conductivity are two key factors for metal-free graphene electrocatalysts to realize superior catalytic performance toward hydrogen evolution. However, heavy chemical doping usually leads to the reduction of electrical conductivity because the catalytically active dopants give rise to additional electron scattering and hence increased electrical resistance. A hierarchical nanoporous graphene, which is comprised of heavily chemical doped domains and a highly conductive pure graphene substrate, is reported. The hierarchical nanoporous graphene can host a remarkably high concentration of N and S dopants up to 9.0 at % without sacrificing the excellent electrical conductivity of graphene. The combination of heavy chemical doping and high conductivity results in high catalytic activity toward electrochemical hydrogen production. This study has an important implication in developing multi-functional electrocatalysts by 3D nanoarchitecture design.

元の言語English
ページ(範囲)13302-13307
ページ数6
ジャーナルAngewandte Chemie - International Edition
57
発行部数40
DOI
出版物ステータスPublished - 2018 10 1
外部発表Yes

    フィンガープリント

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)

これを引用