Hierarchical Unified Spectral-Spatial Aggregated Transformer for Hyperspectral Image Classification

Weilian Zhou, Sei Ichiro Kamata, Zhengbo Luo, Xiaoyue Chen

研究成果

抄録

Vision Transformer (ViT) has recently been introduced into the computer vision (CV) field with its self-attention mechanism and gotten remarkable performance. However, simply applying ViT for hyperspectral image (HSI) classification is not applicable due to 1) ViT is a spatial-only self-attention model, but rich spectral information exists in HSI; 2) ViT needs sufficient training samples, but HSI suffers from limited samples; 3) ViT does not well learn local features; 4) multi-scale features for ViT are not considered. Furthermore, the methods which combine convolutional neural network (CNN) and ViT generally suffer from a large computational burden. Hence, this paper tends to design a suitable pure ViT based model for HSI classification as the following points: 1) spectral-only vision transformer with all tokens' aggregation; 2) spatial-only local-global transformer; 3) cross-scale local-global feature fusion, and 4) a cooperative loss function to unify the spectral and spatial features. As a result, the proposed idea achieves competitive classification performance on three public datasets than other state-of-the-art methods.

本文言語English
ホスト出版物のタイトル2022 26th International Conference on Pattern Recognition, ICPR 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ページ3041-3047
ページ数7
ISBN(電子版)9781665490627
DOI
出版ステータスPublished - 2022
イベント26th International Conference on Pattern Recognition, ICPR 2022 - Montreal, Canada
継続期間: 2022 8月 212022 8月 25

出版物シリーズ

名前Proceedings - International Conference on Pattern Recognition
2022-August
ISSN(印刷版)1051-4651

Conference

Conference26th International Conference on Pattern Recognition, ICPR 2022
国/地域Canada
CityMontreal
Period22/8/2122/8/25

ASJC Scopus subject areas

  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Hierarchical Unified Spectral-Spatial Aggregated Transformer for Hyperspectral Image Classification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル