High-QoE DASH Live Streaming Using Reinforcement Learning

Bo Wei, Hang Song, Jiro Katto

研究成果: Conference contribution

抄録

With the live video streaming becomes more and more common in daily life such as live meeting and live video call, it is an urgent task to ensure high-quality and low-delay live video streaming service. High user quality of experience (QoE) should be ensured to satisfy the requirement of user, for which latency is one of the important factors. In this paper, a high-QoE live streaming method is proposed with reinforcement learning. Experiments are conducted to evaluate the proposed method. Results demonstrate that the proposal shows the best performance with highest QoE compared with conventional methods in three network conditions. In Ferry case, the QoE is almost twice of the QoE of other methods.

本文言語English
ホスト出版物のタイトル2021 IEEE/ACM 29th International Symposium on Quality of Service, IWQOS 2021
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781665414944
DOI
出版ステータスPublished - 2021 6 25
イベント29th IEEE/ACM International Symposium on Quality of Service, IWQOS 2021 - Virtual, Tokyo, Japan
継続期間: 2021 6 252021 6 28

出版物シリーズ

名前2021 IEEE/ACM 29th International Symposium on Quality of Service, IWQOS 2021

Conference

Conference29th IEEE/ACM International Symposium on Quality of Service, IWQOS 2021
国/地域Japan
CityVirtual, Tokyo
Period21/6/2521/6/28

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • 情報システムおよび情報管理
  • 安全性、リスク、信頼性、品質管理

フィンガープリント

「High-QoE DASH Live Streaming Using Reinforcement Learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル