High Quality Dependency Selection from Automatic Parses

Gongye Jin, Daisuke Kawahara, Sadao Kurohashi

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

Many NLP tasks such as question answering and knowledge acquisition are tightly dependent on dependency parsing. Dependency parsing accuracy is always decisive for the performance of subsequent tasks. Therefore, reducing dependency parsing errors or selecting high quality dependencies is a primary issue. In this paper, we present a supervised approach for automatically selecting high quality dependencies from automatic parses. Experimental results on three different languages show that our approach can effectively select high quality dependencies from the result analyzed by a dependency parser.

本文言語English
ホスト出版物のタイトル6th International Joint Conference on Natural Language Processing, IJCNLP 2013 - Proceedings of the Main Conference
編集者Ruslan Mitkov, Jong C. Park
出版社Asian Federation of Natural Language Processing
ページ947-951
ページ数5
ISBN(電子版)9784990734800
出版ステータスPublished - 2013
外部発表はい
イベント6th International Joint Conference on Natural Language Processing, IJCNLP 2013 - Nagoya, Japan
継続期間: 2013 10月 14 → …

出版物シリーズ

名前6th International Joint Conference on Natural Language Processing, IJCNLP 2013 - Proceedings of the Main Conference

Conference

Conference6th International Joint Conference on Natural Language Processing, IJCNLP 2013
国/地域Japan
CityNagoya
Period13/10/14 → …

ASJC Scopus subject areas

  • 人工知能
  • ソフトウェア

フィンガープリント

「High Quality Dependency Selection from Automatic Parses」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル