Higher-order asymptotic theory of shrinkage estimation for general statistical models

Hiroshi Shiraishi, Masanobu Taniguchi, Takashi Yamashita

研究成果: Article査読

抄録

In this study, we develop a higher-order asymptotic theory of shrinkage estimation for general statistical models, which includes dependent processes, multivariate models, and regression models (i.e., non-independent and identically distributed models). We introduce a shrinkage estimator of the maximum likelihood estimator (MLE) and compare it with the standard MLE by using the third-order mean squared error. A sufficient condition for the shrinkage estimator to improve the MLE is given in a general setting. Our model is described as a curved statistical model p(⋅;θ(u)), where θ is a parameter of the larger model and u is a parameter of interest with dimu<dimθ. This setting is especially suitable for estimating portfolio coefficients u based on the mean and variance parameters θ. We finally provide the results of our numerical study and discuss an interesting feature of the shrinkage estimator.

本文言語English
ページ(範囲)198-211
ページ数14
ジャーナルJournal of Multivariate Analysis
166
DOI
出版ステータスPublished - 2018 7

ASJC Scopus subject areas

  • Statistics and Probability
  • Numerical Analysis
  • Statistics, Probability and Uncertainty

フィンガープリント 「Higher-order asymptotic theory of shrinkage estimation for general statistical models」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル