Highly active and stable Co/La0.7Sr0.3AlO3-δ catalyst for steam reforming of toluene

Kent Takise, Takuma Higo, Daiki Mukai, Shuhei Ogo, Yukihiro Sugiura, Yasushi Sekine

研究成果: Article査読

21 被引用数 (Scopus)

抄録

We investigated steam reforming of toluene as a model compound of aromatic hydrocarbons included in biomass tar over Co supported La0.7Sr0.3AlO3-δ (LSAO), perovskite oxide. Ni-supported LSAO catalyst has shown high activity and coke resistance from the redox property of lattice oxygen in/on the LSAO support. Co is known as an active metal for this reaction, so Co/LSAO catalyst was investigated in this work. Co/LSAO catalyst, which showed high steady-state activity and stability, was characterized using H218O isotopic transient response tests, STEM, FT-IR, Arrhenius plot and partial pressure dependence to elucidate high and stable catalytic activity. In situ FT-IR measurements revealed that reaction intermediates on Co/LSAO desorbed at 873 K or lower temperatures. Although redox property of lattice oxygen did not change at around 848 K based on isotopic transient tests, the Arrhenius plots indicate that the rate-determining step changed at around 848 K because of reaction intermediate decomposition desorption. Fast reaction and desorption of absorbed intermediates on Co/LSAO enable catalytic stability during toluene steam reforming.

本文言語English
ページ(範囲)111-117
ページ数7
ジャーナルCatalysis Today
265
DOI
出版ステータスPublished - 2016 5 1

ASJC Scopus subject areas

  • 触媒
  • 化学 (全般)

フィンガープリント

「Highly active and stable Co/La<sub>0.7</sub>Sr<sub>0.3</sub>AlO<sub>3-δ</sub> catalyst for steam reforming of toluene」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル