TY - GEN
T1 - HRCA+
T2 - 13th International Conference on Language Resources and Evaluation Conference, LREC 2022
AU - Zhang, Yuxiang
AU - Yamana, Hayato
N1 - Publisher Copyright:
© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0.
PY - 2022
Y1 - 2022
N2 - Multiple-choice question answering (MCQA) for machine reading comprehension (MRC) is challenging. It requires a model to select a correct answer from several candidate options related to text passages or dialogue. To select the correct answer, such models must have the ability to understand natural languages, comprehend textual representations, and infer the relationship between candidate options, questions, and passages. Previous models calculated representations between passages and question-option pairs separately, thereby ignoring the effect of other relation-pairs. In this study, we propose a human reading comprehension attention (HRCA) model and a passage-question-option (PQO) matrix-guided HRCA model called HRCA+ to increase accuracy. The HRCA model updates the information learned from the previous relation-pair to the next relation-pair. HRCA+ utilizes the textual information and the interior relationship between every two parts in a passage, a question, and the corresponding candidate options. Our proposed method outperforms other state-of-the-art methods. On the Semeval-2018 Task 11 dataset, our proposed method improved accuracy levels from 95.8% to 97.2%, and on the DREAM dataset, it improved accuracy levels from 90.4% to 91.6% without extra training data, from 91.8% to 92.6% with extra training data.
AB - Multiple-choice question answering (MCQA) for machine reading comprehension (MRC) is challenging. It requires a model to select a correct answer from several candidate options related to text passages or dialogue. To select the correct answer, such models must have the ability to understand natural languages, comprehend textual representations, and infer the relationship between candidate options, questions, and passages. Previous models calculated representations between passages and question-option pairs separately, thereby ignoring the effect of other relation-pairs. In this study, we propose a human reading comprehension attention (HRCA) model and a passage-question-option (PQO) matrix-guided HRCA model called HRCA+ to increase accuracy. The HRCA model updates the information learned from the previous relation-pair to the next relation-pair. HRCA+ utilizes the textual information and the interior relationship between every two parts in a passage, a question, and the corresponding candidate options. Our proposed method outperforms other state-of-the-art methods. On the Semeval-2018 Task 11 dataset, our proposed method improved accuracy levels from 95.8% to 97.2%, and on the DREAM dataset, it improved accuracy levels from 90.4% to 91.6% without extra training data, from 91.8% to 92.6% with extra training data.
KW - machine reading comprehension
KW - multiple-choice question answering
KW - natural language processing
UR - http://www.scopus.com/inward/record.url?scp=85141138035&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141138035&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85141138035
T3 - 2022 Language Resources and Evaluation Conference, LREC 2022
SP - 6059
EP - 6068
BT - 2022 Language Resources and Evaluation Conference, LREC 2022
A2 - Calzolari, Nicoletta
A2 - Bechet, Frederic
A2 - Blache, Philippe
A2 - Choukri, Khalid
A2 - Cieri, Christopher
A2 - Declerck, Thierry
A2 - Goggi, Sara
A2 - Isahara, Hitoshi
A2 - Maegaard, Bente
A2 - Mariani, Joseph
A2 - Mazo, Helene
A2 - Odijk, Jan
A2 - Piperidis, Stelios
PB - European Language Resources Association (ELRA)
Y2 - 20 June 2022 through 25 June 2022
ER -