Human-robot cooperation using quasi-symbols generated by RNNPB model

Tetsuya Ogata*, Shohei Matsumoto, Jun Tani, Kazunori Komatani, Hiroshi G. Okuno

*この研究の対応する著者

研究成果: Conference contribution

19 被引用数 (Scopus)

抄録

We describe a means of human robot interaction based not on natural language but on "quasi symbols," which represent sensory-motor dynamics in the task and/or environment. It thus overcomes a key problem of using natural language for human-robot interaction - the need to understand the dynamic context The quasi-symbols used are motion primitives corresponding to the attractor dynamics of the sensory-motor flow. These primitives are extracted from the observed data using the recurrent neural network with parametric bias (RNNPB) model. Binary representations based on the model parameters were implemented as quasi symbols in a humanoid robot, Robovie. The experiment task was robot-arm operation on a table. The quasi-symbols acquired by learning enabled the robot to perform novel motions. A person was able to control the arm through speech interaction using these quasi-symbols. These quasi symbols formed a hierarchical structure corresponding to the number of nodes in the model. The meaning of some of the quasi-symbols depended on the context, indicating that they are useful for human-robot interaction.

本文言語English
ホスト出版物のタイトル2007 IEEE International Conference on Robotics and Automation, ICRA'07
ページ2156-2161
ページ数6
DOI
出版ステータスPublished - 2007 11月 27
外部発表はい
イベント2007 IEEE International Conference on Robotics and Automation, ICRA'07 - Rome, Italy
継続期間: 2007 4月 102007 4月 14

出版物シリーズ

名前Proceedings - IEEE International Conference on Robotics and Automation
ISSN(印刷版)1050-4729

Conference

Conference2007 IEEE International Conference on Robotics and Automation, ICRA'07
国/地域Italy
CityRome
Period07/4/1007/4/14

ASJC Scopus subject areas

  • ソフトウェア
  • 制御およびシステム工学
  • 人工知能
  • 電子工学および電気工学

フィンガープリント

「Human-robot cooperation using quasi-symbols generated by RNNPB model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル