Hydrodynamic limit for ∇φ interface model on a wall

Tadahisa Funaki*

*この研究の対応する著者

研究成果: Article査読

8 被引用数 (Scopus)

抄録

We consider random evolution of an interface on a hard wall under periodic boundary conditions. The dynamics are governed by a system of stochastic differential equations of Skorohod type, which is Langevin equation associated with massless Hamiltonian added a strong repelling force for the interface to stay over the wall. We study its macroscopic behavior under a suitable large scale space-time limit and derive a nonlinear partial differential equation, which describes the mean curvature motion except for some anisotropy effects, with reflection at the wall. Such equation is characterized by an evolutionary variational inequality.

本文言語English
ページ(範囲)155-183
ページ数29
ジャーナルProbability Theory and Related Fields
126
2
DOI
出版ステータスPublished - 2003 6 1
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 統計学および確率
  • 統計学、確率および不確実性

フィンガープリント

「Hydrodynamic limit for ∇φ interface model on a wall」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル