Hypercomplex polar Fourier analysis for color image

Zhuo Yang*, Sei Ichiro Kamata

*この研究の対応する著者

研究成果: Conference contribution

11 被引用数 (Scopus)

抄録

Fourier transform is a significant tool in image processing and pattern recognition. By introducing hypercomplex number, hypercomplex Fourier transform [1] treats signal as vector field and generalizes conventional Fourier transform. Inspired from that, hypercomplex polar Fourier analysis is proposed in this paper. This work extends conventional polar Fourier analysis [5]. The proposed method can handle hypercomplex number represented signals like color image. The hypercom-plex polar Fourier analysis is reversible that means it can be used to reconstruct image. The hypercomplex polar Fourier descriptor has rotation invariance property that can be used for feature extraction. Due to the noncommutative property of quaternion multiplication, both left-side and right-side hypercomplex polar Fourier analysis are discussed and their relationships are also established in this paper. The experimental results on image reconstruction, rotation invariance and color plate test are given to illustrate the usefulness of the proposed method as an image analysis tool.

本文言語English
ホスト出版物のタイトルICIP 2011
ホスト出版物のサブタイトル2011 18th IEEE International Conference on Image Processing
ページ2117-2120
ページ数4
DOI
出版ステータスPublished - 2011 12月 1
イベント2011 18th IEEE International Conference on Image Processing, ICIP 2011 - Brussels, Belgium
継続期間: 2011 9月 112011 9月 14

出版物シリーズ

名前Proceedings - International Conference on Image Processing, ICIP
ISSN(印刷版)1522-4880

Conference

Conference2011 18th IEEE International Conference on Image Processing, ICIP 2011
国/地域Belgium
CityBrussels
Period11/9/1111/9/14

ASJC Scopus subject areas

  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識
  • 信号処理

フィンガープリント

「Hypercomplex polar Fourier analysis for color image」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル