Hypercomplex polar fourier analysis for image representation

Zhuo Yang*, Sei Ichiro Kamata

*この研究の対応する著者

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Fourier transform is a significant tool in image processing and pattern recognition. By introducing a hypercomplex number, hypercomplex Fourier transform treats a signal as a vector field and generalizes the conventional Fourier transform. Inspired from that, hypercomplex polar Fourier analysis that extends conventional polar Fourier analysis is proposed in this paper. The proposed method can handle signals represented by hypercomplex numbers as color images. The hypercomplex polar Fourier analysis is reversible that means it can be used to reconstruct image. The hypercomplex polar Fourier descriptor has rotation invariance property that can be used for feature extraction. Due to the noncommutative property of quaternion multiplication, both left-side and right-side hypercomplex polar Fourier analysis are discussed and their relationships are also established in this paper. The experimental results on image reconstruction, rotation invariance, color plate test and image retrieval are given to illustrate the usefulness of the proposed method as an image analysis tool.

本文言語English
ページ(範囲)1663-1670
ページ数8
ジャーナルIEICE Transactions on Information and Systems
E94-D
8
DOI
出版ステータスPublished - 2011 8月

ASJC Scopus subject areas

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「Hypercomplex polar fourier analysis for image representation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル