Identification and Control of a PV-Supplied Separately Excited DC Motor Using Universal Learning Networks

Ahmed Hussein, Kotaro Hirasawa, Jinglu Hu

研究成果: Conference article査読

4 被引用数 (Scopus)

抄録

This paper describes the use of Universal Learning Networks (ULNs) in the identification and control of a separately excited de motor loaded with a centrifugal pump and fed from Photovoltaic (PV) generator via dc-dc buck-boost converter. The Universal Learning Network Identifier (ULNI) is trained offline using the forward propagation algorithm to emulate the dynamic behavior of the de motor system. Then this identifier is used, instead of the motor system, for the online training of the Universal Learning Network Controller (ULNC). As a result, the motor speed can follow all arbitrarily selected reference signal. Furthermore, the overall system call operate at the Maximum Power Point (MPP) of the PV generator. which is the optimal operating point. The simulation results showed a good performance for the identifier and the controller as well.

本文言語English
ページ(範囲)1411-1416
ページ数6
ジャーナルIFAC Proceedings Volumes (IFAC-PapersOnline)
36
16
DOI
出版ステータスPublished - 2003
イベント13th IFAC Symposium on System Identification, SYSID 2003 - Rotterdam, Netherlands
継続期間: 2003 8月 272003 8月 29

ASJC Scopus subject areas

  • 制御およびシステム工学

フィンガープリント

「Identification and Control of a PV-Supplied Separately Excited DC Motor Using Universal Learning Networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル