Identifying evolutionary topic temporal patterns based on bursty phrase clustering

Yixuan Liu*, Zihao Gao, Mizuho Iwaihara

*この研究の対応する著者

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

We discuss a temporal text mining task on finding evolutionary patterns of topics from a collection of article revisions. To reveal the evolution of topics, we propose a novel method for finding key phrases that are bursty and significant in terms of revision histories. Then we show a time series clustering method to group phrases that have similar burst histories, where additions and deletions are separately considered, and time series is abstracted by burst detection. In clustering, we use dynamic time warping to measure the distance between time sequences of phrase frequencies. Experimental results show that our method clusters phrases into groups that actually share similar bursts which can be explained by real-world events.

本文言語English
ホスト出版物のタイトルWeb and Big Data - 1st International Joint Conference, APWeb-WAIM 2017, Proceedings
編集者Christian S. Jensen, Xiang Lian, Lei Chen, Cyrus Shahabi, Xiaochun Yang
出版社Springer Verlag
ページ276-284
ページ数9
ISBN(印刷版)9783319635637
DOI
出版ステータスPublished - 2017
イベント1st Asia-Pacific Web and Web-Age Information Management Joint Conference on Web and Big Data, APWeb-WAIM 2017 - Beijing, China
継続期間: 2017 7月 72017 7月 9

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
10367 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Other

Other1st Asia-Pacific Web and Web-Age Information Management Joint Conference on Web and Big Data, APWeb-WAIM 2017
国/地域China
CityBeijing
Period17/7/717/7/9

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Identifying evolutionary topic temporal patterns based on bursty phrase clustering」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル