Implementable stable solutions to pure matching problems

Koichi Tadenuma*, Manabu Toda

*この研究の対応する著者

研究成果査読

12 被引用数 (Scopus)

抄録

We consider "pure" matching problems, where being unmatched ("being single") is not a feasible choice or it is always the last choice for every agent. We show that there exists a proper subsolution of the stable solution that is implementable in Nash equilibria. Moreover, if the number of men M and the number of women W are less than or equal to 2, then any subsolution of the stable solution is implementable. However, if M=W≥3, there exists no implementable single-valued subsolution of the stable solution. All these results should be contrasted with the results in the recent literature on the matching problems with a single status.

本文言語English
ページ(範囲)121-132
ページ数12
ジャーナルMathematical social sciences
35
2
DOI
出版ステータスPublished - 1998 3 2
外部発表はい

ASJC Scopus subject areas

  • 社会学および政治科学
  • 社会科学(全般)
  • 心理学(全般)
  • 統計学、確率および不確実性

フィンガープリント

「Implementable stable solutions to pure matching problems」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル