Implementable stable solutions to pure matching problems

Koichi Tadenuma, Manabu Toda

研究成果: Article

12 引用 (Scopus)

抜粋

We consider "pure" matching problems, where being unmatched ("being single") is not a feasible choice or it is always the last choice for every agent. We show that there exists a proper subsolution of the stable solution that is implementable in Nash equilibria. Moreover, if the number of men M and the number of women W are less than or equal to 2, then any subsolution of the stable solution is implementable. However, if M=W≥3, there exists no implementable single-valued subsolution of the stable solution. All these results should be contrasted with the results in the recent literature on the matching problems with a single status.

元の言語English
ページ(範囲)121-132
ページ数12
ジャーナルMathematical social sciences
35
発行部数2
DOI
出版物ステータスPublished - 1998 3 2

ASJC Scopus subject areas

  • Sociology and Political Science
  • Social Sciences(all)
  • Psychology(all)
  • Statistics, Probability and Uncertainty

フィンガープリント Implementable stable solutions to pure matching problems' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用