Improved color barycenter model and its separation for road sign detection

Qieshi Zhang, Sei Ichiro Kamata

研究成果: Article査読

5 被引用数 (Scopus)

抄録

This paper proposes an improved color barycenter model (CBM) and its separation for automatic road sign (RS) detection. The previous version of CBM can find out the colors of RS, but the accuracy is not high enough for separating the magenta and blue regions and the influence of number with the same color are not considered. In this paper, the improved CBM expands the barycenter distribution to cylindrical coordinate system (CCS) and takes the number of colors at each position into account for clustering. Under this distribution, the color information can be represented more clearly for analyzing. Then aim to the characteristic of barycenter distribution in CBM (CBM-BD), a constrained clustering method is presented to cluster the CBM-BD in CCS. Although the proposed clustering method looks like conventional K-means in some part, it can solve some limitations of K-means in our research. The experimental results show that the proposed method is able to detect RS with high robustness.

本文言語English
ページ(範囲)2839-2849
ページ数11
ジャーナルIEICE Transactions on Information and Systems
E96-D
12
DOI
出版ステータスPublished - 2013 12

ASJC Scopus subject areas

  • ソフトウェア
  • ハードウェアとアーキテクチャ
  • コンピュータ ビジョンおよびパターン認識
  • 電子工学および電気工学
  • 人工知能

フィンガープリント

「Improved color barycenter model and its separation for road sign detection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル