TY - JOUR

T1 - Improved sensitivity of interferometric gravitational-wave detectors to ultralight vector dark matter from the finite light-traveling time

AU - Morisaki, Soichiro

AU - Fujita, Tomohiro

AU - Michimura, Yuta

AU - Nakatsuka, Hiromasa

AU - Obata, Ippei

N1 - Funding Information:
This work was supported by JSPS KAKENHI Grants No. 18H01224, No. 18K13537, No. 18K18763, No. 19J21974, No. 20H05850, No. 20H05854, No. 20H05859, and NSF PHY-1912649. H. N. is supported by the Advanced Leading Graduate Course for Photon Science, and I. O. is supported by the JSPS Overseas Research Fellowship.
Publisher Copyright:
© 2021 authors.

PY - 2021/3/18

Y1 - 2021/3/18

N2 - Recently, several studies have pointed out that gravitational-wave detectors are sensitive to ultralight vector dark matter and can improve the current best constraints given by the equivalence principle tests. While a gravitational-wave detector is a highly precise measuring tool for the length difference of its arms, its sensitivity is limited because the displacements of its test mass mirrors caused by vector dark matter are almost common. In this paper, we point out that the sensitivity is significantly improved if the effect of finite light-traveling time in the detector's arms is taken into account. This effect enables advanced LIGO to improve the constraints on the U(1)B-L gauge coupling by an order of magnitude compared with the current best constraints. It also makes the sensitivities of the future gravitational-wave detectors overwhelmingly better than the current ones. The factor by which the constraints are improved due to the new effect depends on the mass of the vector dark matter, and the maximum improvement factors are 470, 880, 1600, 180, and 1400 for advanced LIGO, Einstein Telescope, Cosmic Explorer, DECIGO, and LISA, respectively. Including the new effect, we update the constraints given by the first observing run of advanced LIGO and improve the constraints on the U(1)B gauge coupling by an order of magnitude compared with the current best constraints.

AB - Recently, several studies have pointed out that gravitational-wave detectors are sensitive to ultralight vector dark matter and can improve the current best constraints given by the equivalence principle tests. While a gravitational-wave detector is a highly precise measuring tool for the length difference of its arms, its sensitivity is limited because the displacements of its test mass mirrors caused by vector dark matter are almost common. In this paper, we point out that the sensitivity is significantly improved if the effect of finite light-traveling time in the detector's arms is taken into account. This effect enables advanced LIGO to improve the constraints on the U(1)B-L gauge coupling by an order of magnitude compared with the current best constraints. It also makes the sensitivities of the future gravitational-wave detectors overwhelmingly better than the current ones. The factor by which the constraints are improved due to the new effect depends on the mass of the vector dark matter, and the maximum improvement factors are 470, 880, 1600, 180, and 1400 for advanced LIGO, Einstein Telescope, Cosmic Explorer, DECIGO, and LISA, respectively. Including the new effect, we update the constraints given by the first observing run of advanced LIGO and improve the constraints on the U(1)B gauge coupling by an order of magnitude compared with the current best constraints.

UR - http://www.scopus.com/inward/record.url?scp=85103100499&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85103100499&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.103.L051702

DO - 10.1103/PhysRevD.103.L051702

M3 - Article

AN - SCOPUS:85103100499

VL - 103

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 5

M1 - L051702

ER -