Improvement of utterance clustering by using employees' sound and area data

Tetsuya Kawase, Masanori Takehara, Satoshi Tamura, Satoru Hayamizu, Ryuhei Tenmoku, Takeshi Kurata

研究成果

1 被引用数 (Scopus)

抄録

In this paper, we propose to use staying area data toward the estimation of serving time for customers. To classify utterances enables us to estimate conversation types between speakers. However, its performance becomes lower in real environments. We propose a method using area data with sound data to solve this problem. We also propose a method to estimate the conversation types using the decision trees. They were tested with the data recorded in a Japanese restaurant. In the experiment to classify utterances, the proposed method performed better than the method using only sound data. In the experiment to estimate the conversation types, we succeeded to recover 70% of the mis-classified conversations using both of sound and area data.

本文言語English
ホスト出版物のタイトル2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
出版社Institute of Electrical and Electronics Engineers Inc.
ページ3047-3051
ページ数5
ISBN(印刷版)9781479928927
DOI
出版ステータスPublished - 2014
外部発表はい
イベント2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014 - Florence, Italy
継続期間: 2014 5 42014 5 9

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN(印刷版)1520-6149

Conference

Conference2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2014
国/地域Italy
CityFlorence
Period14/5/414/5/9

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Improvement of utterance clustering by using employees' sound and area data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル