Improvements of an X-ray microcalorimeter for detecting cosmic rays

Yuichi Yokoyama, Shuichi Shoji, Kazuhisa Mitsuda, Ryuichi Fujimoto, Toshiyuki Miyazaki, Tohru Oshima, Masahiro Yamazaki, Naoko Iyomoto, Kazuo Futamoto, Yoshinao Ishizaki, Tomohiro Kagei

研究成果: Article査読

2 被引用数 (Scopus)

抄録

An X-ray microcalorimeter that consists of an x-ray absorber to transfer the incident photon energy to the temperature rise, a temperature sensor to detect the temperature change and suspending beams for thermal isolation from the substrate have been fabricated. Titanium/Gold thin film transition edge sensor (TES) is used as the temperature sensor. We fabricated and tested the first prototype in the previous study and obtained the transition temperature of 0.52K, energy resolution of 550eV (FWHM) for 6keV radiation. These values were smaller than that of expected. We applied a Sn absorber and redesigned the microstructure of the x-ray microcalorimeter. Consequently, we have obtained 158eV at 5.9keV radiation of the energy resolution, which is about 4 times higher than that of the first prototype. This value is nearly equal to the conventional X-ray CCD. The highest energy resolution of the x-ray microcalorimeter of our design is estimated to ∼5 eV at the operating point of 0.2K. To realize such a good energy resolution calorimeter army, we are going to improve the sensitivity of the TES by optimizing the process condition. A Sn absorber formed by electroplating is also under evaluating simultaneously. It is necessary to fabricate uniform array structures.

本文言語English
ページ(範囲)58-65
ページ数8
ジャーナルProceedings of SPIE - The International Society for Optical Engineering
4230
DOI
出版ステータスPublished - 2000 1月 1

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • コンピュータ サイエンスの応用
  • 応用数学
  • 電子工学および電気工学

フィンガープリント

「Improvements of an X-ray microcalorimeter for detecting cosmic rays」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル