Improving semantic video indexing: Efforts in Waseda TRECVID 2015 SIN system

Kazuya Ueki, Tetsunori Kobayashi

研究成果: Conference contribution

3 被引用数 (Scopus)

抄録

In this paper, we propose a method for improving the performance of semantic video indexing. Our approach involves extracting features from multiple convolutional neural networks (CNNs), creating multiple classifiers, and integrating them. We employed four measures to accomplish this: (1) utilizing multiple evidences observed in each video and effectively compressing them into a fixed-length vector; (2) introducing gradient and motion features to CNNs; (3) enriching variations of the training and the testing sets; and (4) extracting features from several CNNs trained with various large-scale datasets. Using the test dataset from TRECVID's 2014 evaluation benchmark, we evaluated the performance of the proposal in terms of the mean extended inferred average precision measure. On this measure, our system's performance was 35.7, outperforming the state-of-the-art TRECVID 2014 benchmark performance of 33.2. Based on this work, our submission at TRECVID 2015 was ranked second among all submissions.

本文言語English
ホスト出版物のタイトル2016 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1184-1188
ページ数5
ISBN(電子版)9781479999880
DOI
出版ステータスPublished - 2016 5 18
イベント41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Shanghai, China
継続期間: 2016 3 202016 3 25

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2016-May
ISSN(印刷版)1520-6149

Other

Other41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016
国/地域China
CityShanghai
Period16/3/2016/3/25

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Improving semantic video indexing: Efforts in Waseda TRECVID 2015 SIN system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル