In situ cross-linked electrospun fiber scaffold of collagen for fabricating cell-dense muscle tissue

Naoya Takeda, Kenichi Tamura, Ryo Mineguchi, Yumiko Ishikawa, Yuji Haraguchi, Tatsuya Shimizu, Yusuke Hara

研究成果: Article査読

22 被引用数 (Scopus)

抄録

Engineered muscle tissues used as transplant tissues in regenerative medicine should have a three-dimensional and cell-dense structure like native tissue. For fabricating a 3D cell-dense muscle tissue from myoblasts, we proposed the electrospun type I collagen microfiber scaffold of the string-shape like a harp. The microfibers were oriented in the same direction to allow the myoblasts to align, and were strung at low density with micrometer intervals to create space for the cells to occupy. To realize this shape of the scaffold, we employed in situ cross-linking during electrospinning process for the first time to collagen fibers. The collagen microfibers in situ cross-linked with glutaraldehyde stably existed in the aqueous media and completely retained the original shape to save the spaces between the fibers for over 14 days. On the contrary, the conventional cross-linking method by exposure to a glutaraldehyde aqueous solution vapor partially dissolved and damaged the fiber to lose a low-density shape of the scaffold. Myoblasts could penetrate into the interior of the in situ cross-linked string-shaped scaffold and form the cell-dense muscle tissues. Histochemical analysis showed the total area occupied by the cells in the cross section of the tissue was approximately 73 %. Furthermore, the resulting muscle tissue fabricated from primary myoblasts showed typical sarcomeric cross-striations and the entire tissue continuously pulsated by autonomous contraction. Together with the in situ cross-linking, the string-shaped scaffold provides an efficient methodology to fabricate a cell-dense 3D muscle tissue, which could be applied in regenerative medicine in future.

本文言語English
ページ(範囲)141-148
ページ数8
ジャーナルJournal of Artificial Organs
19
2
DOI
出版ステータスPublished - 2016 6 1

ASJC Scopus subject areas

  • 医学(その他)
  • 生体材料
  • 生体医工学
  • 循環器および心血管医学

フィンガープリント

「In situ cross-linked electrospun fiber scaffold of collagen for fabricating cell-dense muscle tissue」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル