TY - JOUR
T1 - In Situ Raman Microscopy of a Single Graphite Microflake Electrode in a Li +-Containing Electrolyte
AU - Shi, Qingfang
AU - Dokko, Kaoru
AU - Scherson, Daniel Alberto
PY - 2004/4/15
Y1 - 2004/4/15
N2 - Highly detailed Raman spectra from a single KS-44 graphite microflake electrode as a function of the applied potential have been collected in situ using a Raman microscope and a sealed spectroelectrochemical cell isolated from the laboratory environment. Correlations were found between the Raman spectral features and the various Li + intercalation stages while recording in real time Raman spectra during a linear potential scan from 0.7 V down ca. 0.0 V vs Li/Li + at a rate of 0. 1 mV/s in a 1 M LiClO 4 solution in a 1:1 (by volume) ethylene carbonate (EC):diethyl carbonate (DEC) mixture. In particular, clearly defined isosbestic points were observed for data collected in the potential range where the transition between dilute phase 1 and phase 4 of lithiated graphite is known to occur, i.e., 0.174 ≤ E ≤ 0.215 V vs Li/Li +. Statistical analysis of the spectroscopic data within this region made it possible to determine independently the fraction of each of the two phases present as a function of potential without relying on coulometric information and then predict, on the basis of proposed stoichiometry for the transition, a spectrally derived voltammetric feature.
AB - Highly detailed Raman spectra from a single KS-44 graphite microflake electrode as a function of the applied potential have been collected in situ using a Raman microscope and a sealed spectroelectrochemical cell isolated from the laboratory environment. Correlations were found between the Raman spectral features and the various Li + intercalation stages while recording in real time Raman spectra during a linear potential scan from 0.7 V down ca. 0.0 V vs Li/Li + at a rate of 0. 1 mV/s in a 1 M LiClO 4 solution in a 1:1 (by volume) ethylene carbonate (EC):diethyl carbonate (DEC) mixture. In particular, clearly defined isosbestic points were observed for data collected in the potential range where the transition between dilute phase 1 and phase 4 of lithiated graphite is known to occur, i.e., 0.174 ≤ E ≤ 0.215 V vs Li/Li +. Statistical analysis of the spectroscopic data within this region made it possible to determine independently the fraction of each of the two phases present as a function of potential without relying on coulometric information and then predict, on the basis of proposed stoichiometry for the transition, a spectrally derived voltammetric feature.
UR - http://www.scopus.com/inward/record.url?scp=2342628650&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=2342628650&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:2342628650
SN - 1520-6106
VL - 108
SP - 4789
EP - 4793
JO - Journal of Physical Chemistry B Materials
JF - Journal of Physical Chemistry B Materials
IS - 15
ER -