Inequalities associated with dilations

Tohru Ozawa, Hironobu Sasaki

研究成果: Article査読

10 被引用数 (Scopus)

抄録

Some properties of distributions f satisfying x · ∇ f ∈ Lp (ℝn), 1 ≤ p < ∞, are studied. The operator x · ∇ is the generator of a semi-group of dilations. We first give Sobolev type inequalities with respect to the operator x · ∇. Using the inequalities, we also show that if $f \in L-\rm loc ^p (\mathbb R^n)$, x · ∇ f ∈ Lp (ℝn) and |x|n/p|f(x)| vanishes at infinity, then f belongs to Lp (ℝn). One of the Sobolev type inequalities is shown to be equivalent to the Hardy inequality in L2 (ℝn).

本文言語English
ページ(範囲)265-277
ページ数13
ジャーナルCommunications in Contemporary Mathematics
11
2
DOI
出版ステータスPublished - 2009 4

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

フィンガープリント 「Inequalities associated with dilations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル