Information geometry of U-Boost and Bregman divergence

Noboru Murata*, Takashi Takenouchi, Takafumi Kanamori, Shinto Eguchi

*この研究の対応する著者

研究成果査読

122 被引用数 (Scopus)

抄録

We aim at an extension of AdaBoost to U-Boost, in the paradigm to build a stronger classification machine from a set of weak learning machines. A geometric understanding of the Bregman divergence defined by a generic convex function U leads to the U-Boost method in the framework of information geometry extended to the space of the finite measures over a label set. We propose two versions of U-Boost learning algorithms by taking account of whether the domain is restricted to the space of probability functions. In the sequential step, we observe that the two adjacent and the initial classifiers are associated with a right triangle in the scale via the Bregman divergence, called the Pythagorean relation. This leads to a mild convergence property of the U-Boost algorithm as seen in the expectation-maximization algorithm. Statistical discussions for consistency and robustness elucidate the properties of the U-Boost methods based on a stochastic assumption for training data.

本文言語English
ページ(範囲)1437-1481
ページ数45
ジャーナルNeural Computation
16
7
DOI
出版ステータスPublished - 2004 7 1

ASJC Scopus subject areas

  • 人文科学(その他)
  • 認知神経科学

フィンガープリント

「Information geometry of U-Boost and Bregman divergence」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル