Initial results of in vivo CT imaging of contrast agents using MPPC-based photon-counting CT

Daichi Sato*, Makoto Arimoto, Kotaro Yoshiura, Tomoya Mizuno, Ko Aiga, Kairi Ishiguro, Takahiro Tomoda, Hiroki Kawashima, Satoshi Kobayashi, Kenichiro Okumura, Kazuhiro Murakami, Jun Kataoka, Takaya Toyoda, Mayu Sagisaka, Shinsuke Terazawa, Satoshi Shiota


研究成果: Article査読


X-ray computed tomography (CT) is an essential technology in modern medicine, as it enables three-dimensional non-destructive observation of the inside of the body. Contrast-enhanced CT scanning is widely performed for lesion-enhanced imaging. However, conventional X-ray CT systems integrate all incident X-ray signals, leading to the acquisition of monochromatic energy information and the prevention of material identification and quantitative evaluation of the concentration of contrast agents. Recently, photon counting CT (PC-CT) has been attracting attention as a new system for solving these problems. PC-CT utilizes the energy information of individual X-ray photons, enabling the identification of target materials. We have performed demonstrations combining the PC-CT system that we developed with fast scintillators and multi-pixel photon counters. In this study, we report on the initial results of in-vivo X-ray CT imaging with our established PC-CT system. We injected an iodine contrast agent into a mouse and visualized the spatial distribution of the contrast agent. Subsequently, we performed K-edge imaging and concentration mapping with the obtained CT images in multiple energy bands. The obtained images displayed successful three-dimensional contrast enhancement and a concentration map of the kidney and bladder in the mouse, indicating significant potential for the clinical application of this silicon photomultiplier-based PC-CT system.

ASJC Scopus subject areas

  • 核物理学および高エネルギー物理学
  • 器械工学


「Initial results of in vivo CT imaging of contrast agents using MPPC-based photon-counting CT」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。