Injection of synthesized FePt nanoparticles in hole-patterns for bit patterned media

Takuma Hachisu, Wataru Sato, Shugo Ishizuka, Atsushi Sugiyama, Jun Mizuno, Tetsuya Osaka*

*この研究の対応する著者

研究成果: Article査読

8 被引用数 (Scopus)

抄録

FePt nanoparticles of uniform sizes, compositions, and crystal structures can be obtained by chemical synthesis. Additionally, the nanoparticles can be well dispersed by the adsorption of a surfactant on the nanoparticle surface. Previously, the immobilization of FePt nanoparticles on a thermal oxide Si substrate was carried out by chemical synthesis, utilizing the PtS bonding between the -SH functional group in (3-mercaptopropyl)trimethoxysilane, MPTMS and Pt in FePt nanoparticles. However, controlling FePt nanoparticle arrays by this synthesis method was very difficult. In the present study, we attempted to control the distortion of the arrangement of FePt nanoparticles using an MPTMS layer modified with a silane coupling reaction and a geometrical structure prepared by ultraviolet nanoimprint lithography (UV-NIL). In this study, the hole-patterns used for the geometrical structure on Si(1 0 0) were 200 nm wide, 40 nm deep, and had a 500 nm pitch. The 5.6 nm FePt nanoparticles were used to coat the hole-patterns by using a picoliter pipette. An XHR-SEM image clearly revealed that the FePt nanoparticles were successfully arranged as a single layer with an average pitch of 10.0 nm by PtS bonding in the hole-patterns on Si(1 0 0).

本文言語English
ページ(範囲)303-308
ページ数6
ジャーナルJournal of Magnetism and Magnetic Materials
324
3
DOI
出版ステータスPublished - 2012 2月

ASJC Scopus subject areas

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学

フィンガープリント

「Injection of synthesized FePt nanoparticles in hole-patterns for bit patterned media」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル