Integrable discretizations and self-adaptive moving mesh method for a coupled short pulse equation

Bao Feng Feng, Junchao Chen, Yong Chen, Ken Ichi Maruno, Yasuhiro Ohta

研究成果: Article査読

8 被引用数 (Scopus)

抄録

In the present paper, integrable semi-discrete and fully discrete analogues of a coupled short pulse (CSP) equation are constructed. The key to the construction are the bilinear forms and determinant structure of the solutions of the CSP equation. We also construct N-soliton solutions for the semi-discrete and fully discrete analogues of the CSP equations in the form of Casorati determinants. In the continuous limit, we show that the fully discrete CSP equation converges to the semi-discrete CSP equation, then further to the continuous CSP equation. Moreover, the integrable semi-discretization of the CSP equation is used as a self-adaptive moving mesh method for numerical simulations. The numerical results agree with the analytical results very well.

本文言語English
論文番号385202
ジャーナルJournal of Physics A: Mathematical and Theoretical
48
38
DOI
出版ステータスPublished - 2015 9 25

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • モデリングとシミュレーション
  • 数理物理学
  • 物理学および天文学(全般)

フィンガープリント

「Integrable discretizations and self-adaptive moving mesh method for a coupled short pulse equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル