Integrable discretizations of the short pulse equation

Bao Feng Feng*, Ken Ichi Maruno, Yasuhiro Ohta

*この研究の対応する著者

研究成果: Article査読

49 被引用数 (Scopus)

抄録

In this paper, we propose integrable semi-discrete and full-discrete analogues of the short pulse (SP) equation. The key construction is the bilinear form and determinant structure of solutions of the SP equation. We also give the determinant formulas of N-soliton solutions of the semi-discrete and full-discrete analogues of the SP equations, from which the multi-loop and multi-breather solutions can be generated. In the continuous limit, the full-discrete SP equation converges to the semi-discrete SP equation, and then to the continuous SP equation. Based on the semi-discrete SP equation, an integrable numerical scheme, i.e. a self-adaptive moving mesh scheme, is proposed and used for the numerical computation of the short pulse equation.

本文言語English
論文番号085203
ジャーナルJournal of Physics A: Mathematical and Theoretical
43
8
DOI
出版ステータスPublished - 2010
外部発表はい

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 統計学および確率
  • モデリングとシミュレーション
  • 数理物理学
  • 物理学および天文学(全般)

フィンガープリント

「Integrable discretizations of the short pulse equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル