### 抜粋

In this paper, we propose integrable semi-discrete and full-discrete analogues of the short pulse (SP) equation. The key construction is the bilinear form and determinant structure of solutions of the SP equation. We also give the determinant formulas of N-soliton solutions of the semi-discrete and full-discrete analogues of the SP equations, from which the multi-loop and multi-breather solutions can be generated. In the continuous limit, the full-discrete SP equation converges to the semi-discrete SP equation, and then to the continuous SP equation. Based on the semi-discrete SP equation, an integrable numerical scheme, i.e. a self-adaptive moving mesh scheme, is proposed and used for the numerical computation of the short pulse equation.

元の言語 | English |
---|---|

記事番号 | 085203 |

ジャーナル | Journal of Physics A: Mathematical and Theoretical |

巻 | 43 |

発行部数 | 8 |

DOI | |

出版物ステータス | Published - 2010 2 16 |

外部発表 | Yes |

### ASJC Scopus subject areas

- Statistical and Nonlinear Physics
- Statistics and Probability
- Modelling and Simulation
- Mathematical Physics
- Physics and Astronomy(all)

## フィンガープリント Integrable discretizations of the short pulse equation' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

## これを引用

*Journal of Physics A: Mathematical and Theoretical*,

*43*(8), [085203]. https://doi.org/10.1088/1751-8113/43/8/085203