Integrable semi-discretization of a multi-component short pulse equation

Bao Feng Feng, Ken ichi Maruno, Yasuhiro Ohta

研究成果: Article査読

14 被引用数 (Scopus)

抄録

In the present paper, we mainly study the integrable semi-discretization of a multi-component short pulse equation. First, we briefly review the bilinear equations for a multi-component short pulse equation proposed by Matsuno [J. Math. Phys. 52, 123702 (2011)] and reaffirm its N-soliton solution in terms of pfaffians. Then by using a Bäcklund transformation of the bilinear equations and defining a discrete hodograph (reciprocal) transformation, an integrable semi-discrete multi-component short pulse equation is constructed. Meanwhile, its N-soliton solution in terms of pfaffians is also proved.

本文言語English
論文番号043502
ジャーナルJournal of Mathematical Physics
56
4
DOI
出版ステータスPublished - 2015 4 16

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Integrable semi-discretization of a multi-component short pulse equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル