Interior regularity criteria in weak spaces for the Navier-Stokes equations

Hyunseok Kim, Hideo Kozono

研究成果: Article

25 引用 (Scopus)

抜粋

We study the interior regularity of weak solutions of the incompressible Navier-Stokes equations in Ω × (0, T), where Ω ⊂ R 3 and 0 < T < ∞. The local boundedness of a weak solution u is proved under the assumption that ||u||Lws(0, T; Lwr (Ω)) is sufficiently small for some (r, s) with 2/s + 3/r = 1 and 3 ≤ r ≤ ∞. Our result extends the well-known criteria of Serrin (1962), Struwe (1988) and Takahashi (1990) to the weak space-time spaces.

元の言語English
ページ(範囲)85-100
ページ数16
ジャーナルManuscripta Mathematica
115
発行部数1
DOI
出版物ステータスPublished - 2004 9 1
外部発表Yes

ASJC Scopus subject areas

  • Mathematics(all)

フィンガープリント Interior regularity criteria in weak spaces for the Navier-Stokes equations' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用