INVESTIGATING SELF-SUPERVISED LEARNING FOR SPEECH ENHANCEMENT AND SEPARATION

Zili Huang, Shinji Watanabe, Shu Wen Yang, Paola García, Sanjeev Khudanpur

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

Speech enhancement and separation are two fundamental tasks for robust speech processing. Speech enhancement suppresses background noise while speech separation extracts target speech from interfering speakers. Despite a great number of supervised learning-based enhancement and separation methods having been proposed and achieving good performance, studies on applying self-supervised learning (SSL) to enhancement and separation are limited. In this paper, we evaluate 13 SSL upstream methods on speech enhancement and separation downstream tasks. Our experimental results on Voicebank-DEMAND and Libri2Mix show that some SSL representations consistently outperform baseline features including the short-time Fourier transform (STFT) magnitude and log Mel filterbank (FBANK). Furthermore, we analyze the factors that make existing SSL frameworks difficult to apply to speech enhancement and separation and discuss the representation properties desired for both tasks. Our study is included as the official speech enhancement and separation downstreams for SUPERB.

本文言語English
ホスト出版物のタイトル2022 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ6837-6841
ページ数5
ISBN(電子版)9781665405409
DOI
出版ステータスPublished - 2022
外部発表はい
イベント47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022 - Virtual, Online, Singapore
継続期間: 2022 5月 232022 5月 27

出版物シリーズ

名前ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2022-May
ISSN(印刷版)1520-6149

Conference

Conference47th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2022
国/地域Singapore
CityVirtual, Online
Period22/5/2322/5/27

ASJC Scopus subject areas

  • ソフトウェア
  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「INVESTIGATING SELF-SUPERVISED LEARNING FOR SPEECH ENHANCEMENT AND SEPARATION」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル