Investigation of Facial Preference Using Gaussian Process Preference Learning and Generative Image Model

Masashi Komori*, Keito Shiroshita, Masataka Nakagami, Koyo Nakamura, Maiko Kobayashi, Katsumi Watanabe

*この研究の対応する著者

研究成果: Conference contribution

抄録

This study introduces a novel approach to investigate human facial attractiveness’s intrinsic psychophysical function using a sequential experimental design with a combination of Bayesian optimization (BO) and StyleGAN2. To estimate a facial attractiveness function from pairwise comparison data, we used a BO that incorporates Gaussian process preference learning (GPPL). Fifty female Japanese university students provided facial photographs. We embedded each female facial image into a latent representation (18 × 512 dimensions) in the StyleGAN2 network trained on the Flickr-Faces-HQ (FFHQ) dataset. Using PCA, the latent representations’ dimension is reduced to an 8-dimensional subspace, which we refer to here as the Japanese female face space. Nine participants participated in the pairwise comparison task. They had to choose the more attractive facial images synthesized using StyleGAN2 in the face subspace and provided their evaluations in 100 trials. The stimuli for the first 80 trials were created from randomly generated parameters in the face subspace, while the remaining 20 trials were created from the parameters calculated using the acquisition function. We estimated the facial parameters corresponding to the most, the least, 25, 50, 75 percentile rank of attractiveness and reconstructed the faces based on the results. The results show that a combination of StyleGAN2 and GPPL methodologies is an effective way to elucidate human kansei evaluations of complex stimuli such as human faces.

本文言語English
ホスト出版物のタイトルComputer Information Systems and Industrial Management - 20th International Conference, CISIM 2021, Proceedings
編集者Khalid Saeed, Jiří Dvorský
出版社Springer Science and Business Media Deutschland GmbH
ページ193-202
ページ数10
ISBN(印刷版)9783030843397
DOI
出版ステータスPublished - 2021
イベント20th International Conference on Computer Information Systems and Industrial Management Applications, CISIM 2021 - Ełk, Poland
継続期間: 2021 9月 242021 9月 26

出版物シリーズ

名前Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12883 LNCS
ISSN(印刷版)0302-9743
ISSN(電子版)1611-3349

Conference

Conference20th International Conference on Computer Information Systems and Industrial Management Applications, CISIM 2021
国/地域Poland
CityEłk
Period21/9/2421/9/26

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「Investigation of Facial Preference Using Gaussian Process Preference Learning and Generative Image Model」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル