Investigation of network architecture for single-channel end-to-end denoising

研究成果: Conference contribution

抄録

This paper examines the effectiveness of a fully convolutional time-domain audio separation network (Conv-TasNet) on single-channel denoising. Conv-TasNet, which has a structure to explicitly estimate a mask for encoded features, has shown to be effective in single-channel sound source separation in noise-free environments, but it has not been applied to denoising. Therefore, the present study investigates a method of learning Conv-TasNet for denoising and clarifies the optimal structure for single-channel end-to-end modeling. Experimental comparisons conducted using the CHiME-3 dataset demonstrate that Conv-TasNet performs well in denoising and yields improvements in single-channel end-to-end denoising over existing denoising autoencoder-based modeling.

本文言語English
ホスト出版物のタイトル28th European Signal Processing Conference, EUSIPCO 2020 - Proceedings
出版社European Signal Processing Conference, EUSIPCO
ページ441-445
ページ数5
ISBN(電子版)9789082797053
DOI
出版ステータスPublished - 2021 1 24
イベント28th European Signal Processing Conference, EUSIPCO 2020 - Amsterdam, Netherlands
継続期間: 2020 8 242020 8 28

出版物シリーズ

名前European Signal Processing Conference
2021-January
ISSN(印刷版)2219-5491

Conference

Conference28th European Signal Processing Conference, EUSIPCO 2020
国/地域Netherlands
CityAmsterdam
Period20/8/2420/8/28

ASJC Scopus subject areas

  • 信号処理
  • 電子工学および電気工学

フィンガープリント

「Investigation of network architecture for single-channel end-to-end denoising」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル