Investigation of PdCuSi metallic glass film for hysteresis-free and fast response capacitive MEMS hydrogen sensors

Yumi Hayashi*, Hiroaki Yamazaki, Daiki Ono, Kei Masunishi, Tamio Ikehashi

*この研究の対応する著者

研究成果: Article査読

21 被引用数 (Scopus)

抄録

In this study, we investigated PdCuSi metallic glass (MG) as a sensing material for capacitive MEMS hydrogen sensors. We first confirmed by film analysis that the fabricated PdCuSi film was MG and that it had a trigonal prism cluster. The measured pressure-composition-temperature curve of PdCuSi MG exhibited no hysteresis during hydrogen absorption and desorption. The response time was found to become faster by two orders of magnitudes compared with that of Pd polycrystal. These properties were attributed to the trigonal prism clusters. Strain was evaluated in the low hydrogen concentration regime of 0.05 vol% to 4.0 vol%, and the strain of PdCuSi MG was found to follow Sieverts' law well, indicating that hydrogen is present in the MG in a diffuse state. The hydrogen-concentration dependence of a capacitive MEMS hydrogen sensor was measured and hysteresis-free characteristics were obtained, implying advantages in hydrogen leak detection applications.

本文言語English
ページ(範囲)9438-9445
ページ数8
ジャーナルInternational Journal of Hydrogen Energy
43
19
DOI
出版ステータスPublished - 2018 5月 10
外部発表はい

ASJC Scopus subject areas

  • 再生可能エネルギー、持続可能性、環境
  • 燃料技術
  • 凝縮系物理学
  • エネルギー工学および電力技術

フィンガープリント

「Investigation of PdCuSi metallic glass film for hysteresis-free and fast response capacitive MEMS hydrogen sensors」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル