(Ir)reducibility

Martin Guest, Claus Hertling

    研究成果: Chapter

    抜粋

    A pair (H, ∇), where H → M is a holomorphic vector bundle on a complex manifold M, and ∇ is a (flat) meromorphic connection, is said to be reducible if there exists a subbundle G ⊂ H with 0 < rank G < rank H which is (at all nonsingular points of the connection) a flat subbundle. Such a G will simply be called a flat subbundle. A pair (H, ∇) is completely reducible if it decomposes into a sum of flat rank 1 subbundles.

    元の言語English
    ホスト出版物のタイトルLecture Notes in Mathematics
    出版者Springer Verlag
    ページ33-36
    ページ数4
    2198
    DOI
    出版物ステータスPublished - 2017

    出版物シリーズ

    名前Lecture Notes in Mathematics
    2198
    ISSN(印刷物)0075-8434

    ASJC Scopus subject areas

    • Algebra and Number Theory

    フィンガープリント (Ir)reducibility' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Guest, M., & Hertling, C. (2017). (Ir)reducibility. : Lecture Notes in Mathematics (巻 2198, pp. 33-36). (Lecture Notes in Mathematics; 巻数 2198). Springer Verlag. https://doi.org/10.1007/978-3-319-66526-9_3