Irreversible catalytic methylcyclohexane dehydrogenation by surface protonics at low temperature

Kent Takise, Ayaka Sato, Kota Murakami, Shuhei Ogo, Jeong Gil Seo, Ken Ichi Imagawa, Shigeru Kado, Yasushi Sekine*

*この研究の対応する著者

研究成果: Article査読

26 被引用数 (Scopus)

抄録

Liquid organic hydrides are regarded as promising for use as hydrogen carriers via the methylcyclohexane (MCH)-toluene-hydrogen cycle. Because of the endothermic nature of MCH dehydrogenation, the reaction is usually conducted at temperatures higher than 623 K. In this work, low-temperature catalytic MCH dehydrogenation was demonstrated over 3 wt% Pt/CeO 2 catalyst by application of electric field across a fixed-bed flow reactor. Results show that a high conversion of MCH beyond thermodynamic equilibrium was achieved even at 423 K. Kinetic analyses exhibited a positive correlation of hydrogen to the reaction rates and an "inverse" kinetic isotope effect (KIE), suggesting that accelerated proton hopping with the H atoms of MCH promotes the reaction. Operando analyses and DFT calculation proved that the reverse reaction (i.e. toluene hydrogenation) was suppressed by the facilitation of toluene desorption in the electric field. The electric field promoted MCH dehydrogenation by surface proton hopping, even at low temperatures with an irreversible pathway.

本文言語English
ページ(範囲)5918-5924
ページ数7
ジャーナルRSC Advances
9
11
DOI
出版ステータスPublished - 2019

ASJC Scopus subject areas

  • 化学 (全般)
  • 化学工学(全般)

フィンガープリント

「Irreversible catalytic methylcyclohexane dehydrogenation by surface protonics at low temperature」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル