Isomonodromy Aspects of the tt* Equations of Cecotti and Vafa III: Iwasawa Factorization and Asymptotics

Martin A. Guest*, Alexander R. Its, Chang Shou Lin

*この研究の対応する著者

研究成果: Article査読

2 被引用数 (Scopus)

抄録

This paper, the third in a series, completes our description of all (radial) solutions on C of the tt*-Toda equations 2(wi)tt¯=-e2(wi+1-wi)+e2(wi-wi-1), using a combination of methods from p.d.e., isomonodromic deformations (Riemann–Hilbert method), and loop groups. We place these global solutions into the broader context of solutions which are smooth near 0. For such solutions, we compute explicitly the Stokes data and connection matrix of the associated meromorphic system, in the resonant cases as well as the non-resonant case. This allows us to give a complete picture of the monodromy data, holomorphic data, and asymptotic data of the global solutions.

本文言語English
ページ(範囲)923-973
ページ数51
ジャーナルCommunications in Mathematical Physics
374
2
DOI
出版ステータスPublished - 2020 3月 1

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Isomonodromy Aspects of the tt* Equations of Cecotti and Vafa III: Iwasawa Factorization and Asymptotics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル