抄録
Entity type matching has many real world applications, especially in entity clustering, de-duplication and efficient query processing. Current methods to extract entities from text usually disregard regularities in the order of entities appearing in the text. In this paper, we focus on enumerative descriptions which enlist entity names in a certain hidden order, often occurring in web documents as listings and tables. We propose an algorithm to discover entity types from enumerative descriptions, where a type hierarchy is known but enumerating orders are hidden and heterogeneous, and partial entity-type mappings are given as seed instances. Our algorithm is iterative: We extract skeletons from syntactic patterns, then train a hidden Markov model to find an optimum enumerating order from seed instances and skeletons, to find a best-fit entity-type assignment.
本文言語 | English |
---|---|
ホスト出版物のタイトル | WWW 2014 Companion - Proceedings of the 23rd International Conference on World Wide Web |
出版社 | Association for Computing Machinery, Inc |
ページ | 1285-1290 |
ページ数 | 6 |
ISBN(電子版) | 9781450327459 |
DOI | |
出版ステータス | Published - 2014 4月 7 |
イベント | 23rd International Conference on World Wide Web, WWW 2014 - Seoul, Korea, Republic of 継続期間: 2014 4月 7 → 2014 4月 11 |
Other
Other | 23rd International Conference on World Wide Web, WWW 2014 |
---|---|
国/地域 | Korea, Republic of |
City | Seoul |
Period | 14/4/7 → 14/4/11 |
ASJC Scopus subject areas
- コンピュータ ネットワークおよび通信
- ソフトウェア