Iterative algorithm for inferring entity types from enumerative descriptions

Qian Chen, Mizuho Iwaihara

研究成果: Conference contribution

抄録

Entity type matching has many real world applications, especially in entity clustering, de-duplication and efficient query processing. Current methods to extract entities from text usually disregard regularities in the order of entities appearing in the text. In this paper, we focus on enumerative descriptions which enlist entity names in a certain hidden order, often occurring in web documents as listings and tables. We propose an algorithm to discover entity types from enumerative descriptions, where a type hierarchy is known but enumerating orders are hidden and heterogeneous, and partial entity-type mappings are given as seed instances. Our algorithm is iterative: We extract skeletons from syntactic patterns, then train a hidden Markov model to find an optimum enumerating order from seed instances and skeletons, to find a best-fit entity-type assignment.

本文言語English
ホスト出版物のタイトルWWW 2014 Companion - Proceedings of the 23rd International Conference on World Wide Web
出版社Association for Computing Machinery, Inc
ページ1285-1290
ページ数6
ISBN(電子版)9781450327459
DOI
出版ステータスPublished - 2014 4月 7
イベント23rd International Conference on World Wide Web, WWW 2014 - Seoul, Korea, Republic of
継続期間: 2014 4月 72014 4月 11

Other

Other23rd International Conference on World Wide Web, WWW 2014
国/地域Korea, Republic of
CitySeoul
Period14/4/714/4/11

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • ソフトウェア

フィンガープリント

「Iterative algorithm for inferring entity types from enumerative descriptions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル