Joint Protection of Energy Security and Information Privacy for Energy Harvesting: An Incentive Federated Learning Approach

Qianqian Pan, Jun Wu, A. K. Bashir, Jianhua Li, Wu Yang, Yasser D. Al-Otaibi

研究成果査読

抄録

Energy harvesting (EH) is a promising and critical technology to mitigate the dilemma between the limited battery capacity and the increasing energy consumption in the Internet of everything. However, the current EH system suffers from energy-information cross threats, facing the overlapping vulnerability of energy deprivation and private information leakage. Although some existing works touch on the security of energy and information in EH, they treat these two issues independently, without collaborative and intelligent protection cross the energy side and information side. To address the above challenge, this paper proposes a joint protection framework of energy security and information privacy for EH with an incentive federated learning approach. First, we design a federated learning-based malicious energy user detection method according to energy status and behaviors to provide energy security protection. Secondly, a differential privacy-empowered information preservation scheme is devised, where sensitive information is perturbed and protected by the customized demand-based noise. Thirdly, a non-cooperative game-enabled incentive mechanism is established to encourage EH nodes to participate in the joint energy-information protection system. The proposed incentive mechanism derives the optimal energy-information security strategy for EH nodes and achieve a tradeoff between the protection of energy security and information privacy. Evaluation results have verified the effectiveness of our proposed joint protection mechanism.

本文言語English
ジャーナルIEEE Transactions on Industrial Informatics
DOI
出版ステータスAccepted/In press - 2021
外部発表はい

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 情報システム
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学

フィンガープリント

「Joint Protection of Energy Security and Information Privacy for Energy Harvesting: An Incentive Federated Learning Approach」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル