Joule heat-induced breakdown of organic thin-film devices under pulse operation

Kou Yoshida, Toshinori Matsushima, Yu Shiihara, Hiroyuki Kuwae, Jun Mizuno, Chihaya Adachi*


研究成果: Article査読

9 被引用数 (Scopus)


We investigated the influence of the substrate's thermal conductivities (k) and the widths of the electrical pulses (τpulse) on the maximum current densities (Jmax) in organic thin-film devices. We also estimated the temperature rise (ΔT) inside devices under the pulse operation using numerical calculations to interpret the observed differences in Jmax. For a long τpulse of 5 μs, Jmax is higher for devices with high-k sapphire substrates (around 1.2 kA/cm2) than devices with low-k plastic substrates (around 0.4 kA/cm2). This is because high-k sapphire substrates can work as heat sinks to relax ΔT for such a long τpulse. Operation of devices with high-k sapphire substrates for a short τpulse of 70 ns resulted in further relaxation of ΔT, leading to an increase of Jmax to around 5 kA/cm2. Interestingly, for such a short τpulse, devices with high-k sapphire and low-k plastic substrates showed similar Jmax and ΔT values, the reason for which may be that it is difficult for the generated Joule heat to travel to the substrate across a low-k organic layer within this short time.

ジャーナルJournal of Applied Physics
出版ステータスPublished - 2017 5月 21

ASJC Scopus subject areas

  • 物理学および天文学(全般)


「Joule heat-induced breakdown of organic thin-film devices under pulse operation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。